2 resultados para metabolic syndrome

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The gene encoding for uncoupling protein-1 (UCP1) is considered to be a candidate gene for type 2 diabetes because of its role in thermogenesis and energy expenditure. The objective of the study was to examine whether genetic variations in the UCP1 gene are associated with type 2 diabetes and its related traits in Asian Indians. Methods: The study subjects, 810 type 2 diabetic subjects and 990 normal glucose tolerant (NGT) subjects, were chosen from the Chennai Urban Rural Epidemiological Study (CURES), an ongoing population-based study in southern India. The polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies. Results: The three polymorphisms, namely -3826A -> G, an A -> C transition in the 5'-untranslated region (UTR) and Met229Leu, were not associated with type 2 diabetes. However, the frequency of the A-C-Met (-3826A -> G-5'UTR A -> C-Met229Leu) haplotype was significantly higher among the type 2 diabetic subjects (2.67%) compared with the NGT subjects (1.45%, P < 0.01). The odds ratio for type 2 diabetes for the individuals carrying the haplotype A-C-Met was 1.82 (95% confidence interval, 1.29-2.78, P = 0.009). Conclusions: The haplotype, A-C-Met, in the UCP1 gene is significantly associated with the increased genetic risk for developing type 2 diabetes in Asian Indians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) is an endotoxin, a potent stimulator of immune response and induction of LPS leads to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). ARDS is a life-threatening disease worldwide with a high mortality rate. The immunological effect of LPS with spleen and thymus is well documented; however the impact on membrane phospholipid during endotoxemia has not yet been studied. Hence we aimed to investigate the influence of LPS on spleen and thymus phospholipid and fatty acid composition by 32P]orthophosphate labeling in rats. The in vitro labeling was carried out with phosphate-free medium (saline). Time course, LPS concentration-dependent, pre- and post-labeling with LPS and fatty acid analysis of phospholipid were performed. Labeling studies showed that 50 mu g LPS specifically altered the major phospholipids, phosphatidylcholine and phosphatidylglycerol in spleen and phosphatidylcholine in thymus. Fatty acid analysis showed a marked alteration of unsaturated fatty acids/saturated fatty acids in spleen and thymus leading to immune impairment via the fatty acid remodeling pathway. Our present in vitro lipid metabolic labeling study could open up new vistas for exploring LPS-induced immune impairment in spleen and thymus, as well as the underlying mechanism.